KnightTour

Posted on

KnightTour

Algorithm Gossip: 骑士走棋盘

说明

骑士旅游(Knight tour)在十八世纪初倍受数学家与拼图迷的注意,它什么时候被提出已不可考,骑士的走法为西洋棋的走法,骑士可以由任一个位置出发,它要如何走完[所有的位置?

解法

骑士的走法,基本上可以使用递回来解决,但是纯綷的递回在维度大时相当没有效率,一个聪明的解法由J.C. Warnsdorff在1823年提出,简单的说,先将最难的位置走完,接下来的路就宽广了,骑士所要走的下一步,“为下一步再选择时,所能走的步数最少 的一步。”,使用这个方法,在不使用递回的情况下,可以有较高的机率找出走法(找不到走法的机会也是有的)。

演算法

FOR(m = 2; m <= 总步数; m++) [ 测试下一步可以走的八个方向,记录可停留的格数count。 IF(count == 0) [ 游历失败 ] ELSE IF(count == 1) [ 下一步只有一个可能 ] ELSE [ 找出下一步的出路最少的格子 如果出路值相同,则选第一个遇到的出路。 ] 走最少出路的格子,记录骑士的新位置。 ]

实作

  • C /#include int board[8][8] = {0}; int main(void) { int startx, starty; int i, j; printf("输入起始点:"); scanf("%d %d", &startx, &starty); if(travel(startx, starty)) { printf("游历完成!\n"); } else { printf("游历失败!\n"); } for(i = 0; i < 8; i++) { for(j = 0; j < 8; j++) { printf("%2d ", board[i][j]); } putchar('\n'); } return 0; } int travel(int x, int y) { // 对应骑士可走的八个方向 int ktmove1[8] = {-2, -1, 1, 2, 2, 1, -1, -2}; int ktmove2[8] = {1, 2, 2, 1, -1, -2, -2, -1}; // 测试下一步的出路 int nexti[8] = {0}; int nextj[8] = {0}; // 记录出路的个数 int exists[8] = {0}; int i, j, k, m, l; int tmpi, tmpj; int count, min, tmp; i = x; j = y; board[i][j] = 1; for(m = 2; m <= 64; m++) { for(l = 0; l < 8; l++) { exists[l] = 0; } l = 0; // 试探八个方向 for(k = 0; k < 8; k++) { tmpi = i + ktmove1[k]; tmpj = j + ktmove2[k]; // 如果是边界了,不可走 if(tmpi < 0 || tmpj < 0 || tmpi > 7 || tmpj > 7) continue; // 如果这个方向可走,记录下来 if(board[tmpi][tmpj] == 0) { nexti[l] = tmpi; nextj[l] = tmpj; // 可走的方向加一个 l++; } } count = l; // 如果可走的方向为0个,返回 if(count == 0) { return 0; } else if(count == 1) { // 只有一个可走的方向 // 所以直接是最少出路的方向 min = 0; } else { // 找出下一个位置的出路数 for(l = 0; l < count; l++) { for(k = 0; k < 8; k++) { tmpi = nexti[l] + ktmove1[k]; tmpj = nextj[l] + ktmove2[k]; if(tmpi < 0 || tmpj < 0 || tmpi > 7 || tmpj > 7) { continue; } if(board[tmpi][tmpj] == 0) exists[l]++; } } tmp = exists[0]; min = 0; // 从可走的方向中寻找最少出路的方向 for(l = 1; l < count; l++) { if(exists[l] < tmp) { tmp = exists[l]; min = l; } } } // 走最少出路的方向 i = nexti[min]; j = nextj[min]; board[i][j] = m; } return 1; }

  • Java public class Knight { public boolean travel(int startX, int startY, int[][] board) { // 对应骑士可走的八个方向 int[] ktmove1 = {-2, -1, 1, 2, 2, 1, -1, -2}; int[] ktmove2 = {1, 2, 2, 1, -1, -2, -2, -1}; // 下一步出路的位置 int[] nexti = new int[board.length]; int[] nextj = new int[board.length]; // 记录出路的个数 int[] exists = new int[board.length]; int x = startX; int y = startY; board[x][y] = 1; for(int m = 2; m <= Math.pow(board.length, 2); m++) { for(int k = 0; k < board.length; k++) { exists[k] = 0; } int count = 0; // 试探八个方向 for(int k = 0; k < board.length; k++) { int tmpi = x + ktmove1[k]; int tmpj = y + ktmove2[k]; // 如果是边界了,不可走 if(tmpi < 0 || tmpj < 0 || tmpi > 7 || tmpj > 7) { continue; } // 如果这个方向可走,记录下来 if(board[tmpi][tmpj] == 0) { nexti[count] = tmpi; nextj[count] = tmpj; // 可走的方向加一个 count++; } } int min = -1; if(count == 0) { return false; } else if(count == 1) { min = 0; } else { // 找出下一个位置的出路数 for(int l = 0; l < count; l++) { for(int k = 0; k < board.length; k++) { int tmpi = nexti[l] + ktmove1[k]; int tmpj = nextj[l] + ktmove2[k]; if(tmpi < 0 || tmpj < 0 || tmpi > 7 || tmpj > 7) { continue; } if(board[tmpi][tmpj] == 0) exists[l]++; } } int tmp = exists[0]; min = 0; // 从可走的方向中寻找最少出路的方向 for(int l = 1; l < count; l++) { if(exists[l] < tmp) { tmp = exists[l]; min = l; } } } // 走最少出路的方向 x = nexti[min]; y = nextj[min]; board[x][y] = m; } return true; } public static void main(String[] args) { int[][] board = new int[8][8]; Knight knight = new Knight(); if(knight.travel( Integer.parseInt(args[0]), Integer.parseInt(args[1]), board)) { System.out.println("游历完成!"); } else { System.out.println("游历失败!"); } for(int i = 0; i < board.length; i++) { for(int j = 0; j < board[0].length; j++) { if(board[i][j] < 10) { System.out.print(" " + board[i][j]); } else { System.out.print(board[i][j]); } System.out.print(" "); } System.out.println(); } } }

希望本站内容对您有点用处,有什么疑问或建议请在后面留言评论
转载请注明作者(RobinChia)和出处 It so life ,请勿用于任何商业用途
本文链接: KnightTour