KnapsackProblem

Posted on

KnapsackProblem

[Algorithm Gossip: 背包问题(Knapsack Problem)]

说明

假设有一个背包的负重最多可达8公斤,而希望在背包中装入负重范围内可得之总价物品,假设是水果好了,水果的编号、单价与重量如下所示: 0 李子 4KG NT$4500 1 苹果 5KG NT$5700 2 橘子 2KG NT$2250 3 草莓 1KG NT$1100 4 甜瓜 6KG NT$6700

解法

背包问题是关于最佳化的问题,要解最佳化问题可以使用“动态规划”(Dynamic programming),从空集合开始,每增加一个元素就先求出该阶段的最佳解,直到所有的元素加入至集合中,最后得到的就是最佳解。 以背包问题为例,我们使用两个阵列value与item,value表示目前的最佳解所得之总价,item表示最后一个放至背包的水果,假设有负重量 1~8的背包8个,并对每个背包求其最佳解。 逐步将水果放入背包中,并求该阶段的最佳解:

  • 放入李子 背包负重 1 2 3 4 5 6 7 8 value 0 0 0 4500 4500 4500 4500 9000 item - - - 0 0 0 0 0

  • 放入苹果 背包负重 1 2 3 4 5 6 7 8 value 0 0 0 4500 5700 5700 5700 9000 item - - - 0 1 1 1 0

  • 放入橘子 背包负重 1 2 3 4 5 6 7 8 value 0 2250 2250 4500 5700 6750 7950 9000 item - 2 2 0 1 2 2 0

  • 放入草莓 背包负重 1 2 3 4 5 6 7 8 value 1100 2250 3350 4500 5700 6800 7950 9050 item 3 2 3 0 1 3 2 3

  • 放入甜瓜 背包负重 1 2 3 4 5 6 7 8 value 1100 2250 3350 4500 5700 6800 7950 9050 item 3 2 3 0 1 3 2 3 由最后一个表格,可以得知在背包负重8公斤时,最多可以装入9050元的水果,而最后一个装入的 水果是3号,也就是草莓,装入了草莓,背包只能再放入7公斤(8-1)的水果,所以必须看背包负重7公斤时的最佳解,最后一个放入的是2号,也就 是橘子,现在背包剩下负重量5公斤(7-2),所以看负重5公斤的最佳解,最后放入的是1号,也就是苹果,此时背包负重量剩下0公斤(5-5),无法 再放入水果,所以求出最佳解为放入草莓、橘子与苹果,而总价为9050元。

实作

  • Java class Fruit { private String name; private int size; private int price; public Fruit(String name, int size, int price) { this.name = name; this.size = size; this.price = price; } public String getName() { return name; } public int getPrice() { return price; } public int getSize() { return size; } } public class Knapsack { public static void main(String[] args) { final int MAX = 8; final int MIN = 1; int[] item = new int[MAX+1]; int[] value = new int[MAX+1]; Fruit fruits[] = { new Fruit("李子", 4, 4500), new Fruit("苹果", 5, 5700), new Fruit("橘子", 2, 2250), new Fruit("草莓", 1, 1100), new Fruit("甜瓜", 6, 6700)}; for(int i = 0; i < fruits.length; i++) { for(int s = fruits[i].getSize(); s <= MAX; s++) { int p = s - fruits[i].getSize(); int newvalue = value[p] + fruits[i].getPrice(); if(newvalue > value[s]) {// 找到阶段最佳解 value[s] = newvalue; item[s] = i; } } } System.out.println("物品\t价格"); for(int i = MAX; i >= MIN; i = i - fruits[item[i]].getSize()) { System.out.println(fruits[item[i]].getName()+ "\t" + fruits[item[i]].getPrice()); } System.out.println("合计\t" + value[MAX]); } }

EratosthenesPrime

Posted on

EratosthenesPrime

Algorithm Gossip: Eratosthenes筛选求质数

说明

除了自身之外,无法被其它整数整除的数称之为质数,要求质数很简单,但如何快速的求出质数则一直是程式设计人员与数学家努力的课题,在这边介绍一个著名的 Eratosthenes求质数方法。

解法

首先知道这个问题可以使用回圈来求解,将一个指定的数除以所有小于它的数,若可以整除就不是质数,然而如何减少回圈的检查次数?如何求出小于N的所有质数? 首先假设要检查的数是N好了,则事实上只要检查至N的开根号就可以了,道理很简单,假设A/B = N,如果A大于N的开根号,则事实上在小于A之前的检查就可以先检查到B这个数可以整除N。不过在程式中使用开根号会精确度的问题,所以可以使用 i/i <= N进行检查,且执行更快。 再来假设有一个筛子存放1~N,例如: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 ........ N 先将2的倍数筛去: 2 3 5 7 9 11 13 15 17 19 21 ........ N 再将3的倍数筛去: 2 3 5 7 11 13 17 19 ........ N 再来将5的倍数筛去,再来将7的质数筛去,再来将11的倍数筛去........,如此进行到最后留下的数就都是质数,这就是Eratosthenes筛选方法(Eratosthenes Sieve Method)。 检查的次数还可以再减少,事实上,只要检查6n+1与6n+5就可以了,也就是直接跳过2与3的倍数,使得程式中的if的检查动作可以减少。

实作

  • C /#include /#include /#define N 1000 int main(void) { int i, j; int prime[N+1]; for(i = 2; i <= N; i++) prime[i] = 1; for(i = 2; i/i <= N; i++) { // 这边可以改进 if(prime[i] == 1) { for(j = 2/i; j <= N; j++) { if(j % i == 0) prime[j] = 0; } } } for(i = 2; i < N; i++) { if(prime[i] == 1) { printf("%4d ", i); if(i % 16 == 0) printf("\n"); } } printf("\n"); return 0; }

  • Java import java.util./; public class Prime { public static int[] findPrimes(final int max) { int[] prime = new int[max+1]; ArrayList list = new ArrayList(); for(int i = 2; i <= max; i++) prime[i] = 1; for(int i = 2; i/i <= max; i++) { // 这边可以改进 if(prime[i] == 1) { for(int j = 2/*i; j <= max; j++) { if(j % i == 0) prime[j] = 0; } } } for(int i = 2; i < max; i++) { if(prime[i] == 1) { list.add(new Integer(i)); } } int[] p = new int[list.size()]; Object[] objs = list.toArray(); for(int i = 0; i < p.length; i++) { p[i] = ((Integer) objs[i]).intValue(); } return p; } public static void main(String[] args) { int[] prime = Prime.findPrimes(1000); for(int i = 0; i < prime.length; i++) { System.out.print(prime[i] + " "); } System.out.println(); } }

SelectionInsertionBubble

Posted on

SelectionInsertionBubble

Algorithm Gossip: 选择、插入、气泡排序

说明

选择排序(Selection sort)、插入排序(Insertion sort)与气泡排序(Bubble sort)这三个排序方式是初学排序所必须知道的三个基本排序方式,它们由于速度不快而不实用(平均与最快的时间复杂度都是O(n2)),然而它们排序的方式确是值得观察与探讨的。

解法

  • 选择排序 将要排序的对象分作两部份,一个是已排序的,一个是未排序的,从后端未排序部份选择一个最小值,并放入前端已排序部份的最后一个,例如: 排序前:70 80 31 37 10 1 48 60 33 80
  1. [1] 80 31 37 10 70 48 60 33 80 选出最小值1
  2. [1 10] 31 37 80 70 48 60 33 80 选出最小值10
  3. [1 10 31] 37 80 70 48 60 33 80 选出最小值31
  4. [1 10 31 33] 80 70 48 60 37 80 ......
  5. [1 10 31 33 37] 70 48 60 80 80 ......
  6. [1 10 31 33 37 48] 70 60 80 80 ......
  7. [1 10 31 33 37 48 60] 70 80 80 ......
  8. [1 10 31 33 37 48 60 70] 80 80 ......
  9. [1 10 31 33 37 48 60 70 80] 80 ......
  • 插入排序 像是玩朴克一样,我们将牌分作两堆,每次从后面一堆的牌抽出最前端的牌,然后插入前面一堆牌的适当位置,例如: 排序前:92 77 67 8 6 84 55 85 43 67
  1. [77 92] 67 8 6 84 55 85 43 67 将77插入92前
  2. [67 77 92] 8 6 84 55 85 43 67 将67插入77前
  3. [8 67 77 92] 6 84 55 85 43 67 将8插入67前
  4. [6 8 67 77 92] 84 55 85 43 67 将6插入8前
  5. [6 8 67 77 84 92] 55 85 43 67 将84插入92前
  6. [6 8 55 67 77 84 92] 85 43 67 将55插入67前
  7. [6 8 55 67 77 84 85 92] 43 67 ......
  8. [6 8 43 55 67 77 84 85 92] 67 ......
  9. [6 8 43 55 67 67 77 84 85 92] ......
  • 气泡排序法 顾名思义,就是排序时,最大的元素会如同气泡一样移至右端,其利用比较相邻元素的方法,将大的元素交换至右端,所以大的元素会不断的往右移动,直到适当的位置为止。

基本的气泡排序法可以利用旗标的方式稍微减少一些比较的时间,当寻访完阵列后都没有发生任何的交换动作,表示排序已经完成,而无需再进行之后的回圈比较与交换动作,例如: 排序前:95 27 90 49 80 58 6 9 18 50

  1. 27 90 49 80 58 6 9 18 50 [95] 95浮出
  2. 27 49 80 58 6 9 18 50 [90 95] 90浮出
  3. 27 49 58 6 9 18 50 [80 90 95] 80浮出
  4. 27 49 6 9 18 50 [58 80 90 95] ......
  5. 27 6 9 18 49 [50 58 80 90 95] ......
  6. 6 9 18 27 [49 50 58 80 90 95] ......
  7. 6 9 18 [27 49 50 58 80 90 95] 由于接下来不会再发生交换动作,排序提早结束 在上面的例子当中,还加入了一个观念,就是当进行至i与i+1时没有交换的动作,表示接下来的i+2至n已经排序完毕,这也增进了气泡排序的效率。

实作

  • C /#include /#include /#include /#define MAX 10 /#define SWAP(x,y) {int t; t = x; x = y; y = t;} void selsort(int[]); // 选择排序 void insort(int[]); // 插入排序 void bubsort(int[]); // 气泡排序 int main(void) { int number[MAX] = {0}; int i; srand(time(NULL)); printf("排序前:"); for(i = 0; i < MAX; i++) { number[i] = rand() % 100; printf("%d ", number[i]); } printf("\n请选择排序方式:\n"); printf("(1)选择排序\n(2)插入排序\n(3)气泡排序\n:"); scanf("%d", &i); switch(i) { case 1: selsort(number); break; case 2: insort(number); break; case 3: bubsort(number); break; default: printf("选项错误(1..3)\n"); } return 0; } void selsort(int number[]) { int i, j, k, m; for(i = 0; i < MAX-1; i++) { m = i; for(j = i+1; j < MAX; j++) if(number[j] < number[m]) m = j; if( i != m) SWAP(number[i], number[m]) printf("第 %d 次排序:", i+1); for(k = 0; k < MAX; k++) printf("%d ", number[k]); printf("\n"); } } void insort(int number[]) { int i, j, k, tmp; for(j = 1; j < MAX; j++) { tmp = number[j]; i = j - 1; while(tmp < number[i]) { number[i+1] = number[i]; i--; if(i == -1) break; } number[i+1] = tmp; printf("第 %d 次排序:", j); for(k = 0; k < MAX; k++) printf("%d ", number[k]); printf("\n"); } } void bubsort(int number[]) { int i, j, k, flag = 1; for(i = 0; i < MAX-1 && flag == 1; i++) { flag = 0; for(j = 0; j < MAX-i-1; j++) { if(number[j+1] < number[j]) { SWAP(number[j+1], number[j]); flag = 1; } } printf("第 %d 次排序:", i+1); for(k = 0; k < MAX; k++) printf("%d ", number[k]); printf("\n"); } }

  • Java public class BasicSort { public static void selectionSort(int[] number) { for(int i = 0; i < number.length - 1; i++) { int m = i; for(int j = i + 1; j < number.length; j++) if(number[j] < number[m]) m = j; if(i != m) swap(number, i, m); } } public static void injectionSort(int[] number) { for(int j = 1; j < number.length; j++) { int tmp = number[j]; int i = j - 1; while(tmp < number[i]) { number[i+1] = number[i]; i--; if(i == -1) break; } number[i+1] = tmp; } } public static void bubbleSort(int[] number) { boolean flag = true; for(int i = 0; i < number.length-1 && flag; i++) { flag = false; for(int j = 0; j < number.length-i-1; j++) { if(number[j+1] < number[j]) { swap(number, j+1, j); flag = true; } } } } private static void swap(int[] number, int i, int j) { int t; t = number[i]; number[i] = number[j]; number[j] = t; } }

SeparateNumber

Posted on

SeparateNumber

Algorithm Gossip: 数字拆解

说明

这个题目来自于 数字拆解,我将之改为C语言的版本,并加上说明。 题目是这样的: 3 = 2+1 = 1+1+1 所以3有三种拆法 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1 共五种 5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 +1 +1 +1 共七种 依此类推,请问一个指定数字NUM的拆解方法个数有多少个?

解法

我们以上例中最后一个数字5的拆解为例,假设f( n )为数字n的可拆解方式个数,而f(x, y)为使用y以下的数字来拆解x的方法个数,则观察: 5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 +1 +1 +1 使用函式来表示的话: f(5) = f(4, 1) + f(3,2) + f(2,3) + f(1,4) + f(0,5) 其中f(1, 4) = f(1, 3) + f(1, 2) + f(1, 1),但是使用大于1的数字来拆解1没有意义,所以f(1, 4) = f(1, 1),而同样的,f(0, 5)会等于f(0, 0),所以: f(5) = f(4, 1) + f(3,2) + f(2,3) + f(1,1) + f(0,0) 依照以上的说明,使用动态程式规画(Dynamic programming)来进行求解,其中f(4,1)其实就是f(5-1, min(5-1,1)),f(x, y)就等于f(n-y, min(n-x, y)),其中n为要拆解的数字,而min()表示取两者中较小的数。 使用一个二维阵列表格table[x][y]来表示f(x, y),刚开始时,将每列的索引0与索引1元素值设定为1,因为任何数以0以下的数拆解必只有1种,而任何数以1以下的数拆解也必只有1种: for(i = 0; i < NUM +1; i++){ table[i][0] = 1; // 任何数以0以下的数拆解必只有1种 table[i][1] = 1; // 任何数以1以下的数拆解必只有1种 }

接下来就开始一个一个进行拆解了,如果数字为NUM,则我们的阵列维度大小必须为NUM x (NUM/2+1),以数字10为例,其维度为10 x 6我们的表格将会如下所示: 1 1 0 0 0 0 1 1 0 0 0 0 1 1 2 0 0 0 1 1 2 3 0 0 1 1 3 4 5 0 1 1 3 5 6 7 1 1 4 7 9 0 1 1 4 8 0 0 1 1 5 0 0 0 1 1 0 0 0 0

实作

  • C /#include /#include /#define NUM 10 // 要拆解的数字 /#define DEBUG 0 int main(void) { int table[NUM][NUM/2+1] = {0}; // 动态规画表格 int count = 0; int result = 0; int i, j, k; printf("数字拆解\n"); printf("3 = 2+1 = 1+1+1 所以3有三种拆法\n"); printf("4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1"); printf("共五种\n"); printf("5 = 4 + 1 = 3 + 2 = 3 + 1 + 1"); printf(" = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 +1 +1 +1"); printf("共七种\n"); printf("依此类推,求 %d 有几种拆法?", NUM); // 初始化 for(i = 0; i < NUM; i++){ table[i][0] = 1; // 任何数以0以下的数拆解必只有1种 table[i][1] = 1; // 任何数以1以下的数拆解必只有1种 } // 动态规划 for(i = 2; i <= NUM; i++){ for(j = 2; j <= i; j++){ if(i + j > NUM) // 大于 NUM continue; count = 0; for(k = 1 ; k <= j; k++){ count += table[i-k][(i-k >= k) ? k : i-k]; } table[i][j] = count; } } // 计算并显示结果 for(k = 1 ; k <= NUM; k++) result += table[NUM-k][(NUM-k >= k) ? k : NUM-k]; printf("\n\nresult: %d\n", result); if(DEBUG) { printf("\n除错资讯\n"); for(i = 0; i < NUM; i++) { for(j = 0; j < NUM/2+1; j++) printf("%2d", table[i][j]); printf("\n"); } } return 0; }

ShakerSort

Posted on

ShakerSort

Algorithm Gossip: Shaker 排序法 - 改良的气泡排序

说明

请看看之前介绍过的气泡排序法: for(i = 0; i < MAX-1 && flag == 1; i++) { flag = 0; for(j = 0; j < MAX-i-1; j++) { if(number[j+1] < number[j]) { SWAP(number[j+1], number[j]); flag = 1; } } }

事实上这个气泡排序法已经不是单纯的气泡排序了,它使用了旗标与右端左移两个方法来改进排序的效能,而Shaker排序法使用到后面这个观念进一步改良气泡排序法。

解法

在上面的气泡排序法中,交换的动作并不会一直进行至阵列的最后一个,而是会进行至MAX-i-1,所以排序的过程中,阵列右方排序好的元素会一直增加,使得左边排序的次数逐渐减少,如我们的例子所示: 排序前:95 27 90 49 80 58 6 9 18 50

  1. 27 90 49 80 58 6 9 18 50 [95] 95浮出
  2. 27 49 80 58 6 9 18 50 [90 95] 90浮出
  3. 27 49 58 6 9 18 50 [80 90 95] 80浮出
  4. 27 49 6 9 18 50 [58 80 90 95] ......
  5. 27 6 9 18 49 [50 58 80 90 95] ......
  6. 6 9 18 27 [49 50 58 80 90 95] ......
  7. 6 9 18 [27 49 50 58 80 90 95] 方括号括住的部份表示已排序完毕,Shaker排序使用了这个概念,如果让左边的元素也具有这样的性质,让左右两边的元素都能先排序完成,如此未排序的元素会集中在中间,由于左右两边同时排序,中间未排序的部份将会很快的减少。 方法就在于气泡排序的双向进行,先让气泡排序由左向右进行,再来让气泡排序由右往左进行,如此完成一次排序的动作,而您必须使用left与right两个旗标来记录左右两端已排序的元素位置。 一个排序的例子如下所示: 排序前:45 19 77 81 13 28 18 19 77 11 往右排序:19 45 77 13 28 18 19 77 11 [81] 向左排序:[11] 19 45 77 13 28 18 19 77 [81] 往右排序:[11] 19 45 13 28 18 19 [77 77 81] 向左排序:[11 13] 19 45 18 28 19 [77 77 81] 往右排序:[11 13] 19 18 28 19 [45 77 77 81] 向左排序:[11 13 18] 19 19 28 [45 77 77 81] 往右排序:[11 13 18] 19 19 [28 45 77 77 81] 向左排序:[11 13 18 19 19] [28 45 77 77 81] 如上所示,括号中表示左右两边已排序完成的部份,当left > right时,则排序完成。

实作

  • C /#include /#include /#include /#define MAX 10 /#define SWAP(x,y) {int t; t = x; x = y; y = t;} void shakersort(int[]); int main(void) { int number[MAX] = {0}; int i; srand(time(NULL)); printf("排序前:"); for(i = 0; i < MAX; i++) { number[i] = rand() % 100; printf("%d ", number[i]); } shakersort(number); printf("\n"); return 0; } void shakersort(int number[]) { int i, left = 0, right = MAX - 1, shift = 0; while(left < right) { // 向右进行气泡排序 for(i = left; i < right; i++) { if(number[i] > number[i+1]) { SWAP(number[i], number[i+1]); shift = i; } } right = shift; printf("\n往右排序:"); for(i = 0; i < MAX; i++) printf("%d ", number[i]); // 向左进行气泡排序 for(i = right; i > left; i--) { if(number[i] < number[i-1]) { SWAP(number[i], number[i-1]); shift = i; } } left = shift; printf("\n向左排序:"); for(i = 0; i < MAX; i++) printf("%d ", number[i]); } }

  • Java public class ShakerSort { public static void sort(int[] number) { int i, left = 0, right = number.length - 1, shift = 0; while(left < right) { // 向右进行气泡排序 for(i = left; i < right; i++) { if(number[i] > number[i+1]) { swap(number, i, i+1); shift = i; } } right = shift; // 向左进行气泡排序 for(i = right; i > left; i--) { if(number[i] < number[i-1]) { swap(number, i ,i-1); shift = i; } } left = shift; } } private static void swap(int[] number, int i, int j) { int t; t = number[i]; number[i] = number[j]; number[j] = t; } }